FORUM8 DESIGN FESTIVAL THE 5TH CONFERENCE – 17 Nov 2011

ENHANCING PRODUCTIVITY: ELECTRONIC QUICK BILLS OF QUANTITIES VIA BIM

BY

ASSOCIATE PROFESSOR EVELYN TEO AI LIN (DR)

NATIONAL UNIVERSITY OF SINGAPORE
DEPARTMENT OF BUILDING
TECHNICAL CO-ORDINATOR OF BUILDINGSMART SINGAPORE

SUMMARY OF PRESENTATION

- PART 1: Why?
 - Why use BIM?
- PART 2: What?
 - What had been done?
- PART 3: Where?
 - Where to get help?
- PART 4: Successful Case Studies
- PART 5: Conclusion

PART 1: WHY BIM? TRANSFORMING PRACTICES IN THE PROJECT MANAGEMENT OF CONSTRUCTION PROJECTS

- According to Smith and Tardif (2009)
 - In order to increase in efficiency, construction industry has
 - to think of new means and methods of production to enhance productivity by converging inefficiency and waste into profit via BIM.

My presentation is to share

- How BIM sustains more *integrated* and *efficient business processes* throughout the life cycle of buildings.
 - better quality buildings with lower costs,
 - shorter project turnaround times, and
 - a higher quality of building information to support better business.

• bSI & bSS

....a neutral, international/local and unique organisation supporting open BIM throughout the PROJECT life cycle.....

PHASED MANDATORY BIM E-SUBMISSION

2013

Mandatory Architecture BIM e-Submissions for all new building projects > 20,000 m²

2014

Mandatory Engineering BIM e-Submissions for all new building projects > 20,000 m²

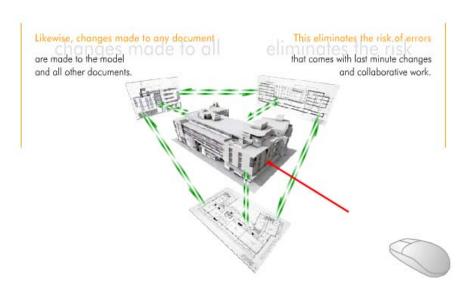
2015

Mandatory Architecture & Engineering BIM e-Submissions for all new building projects > 5,000 m²

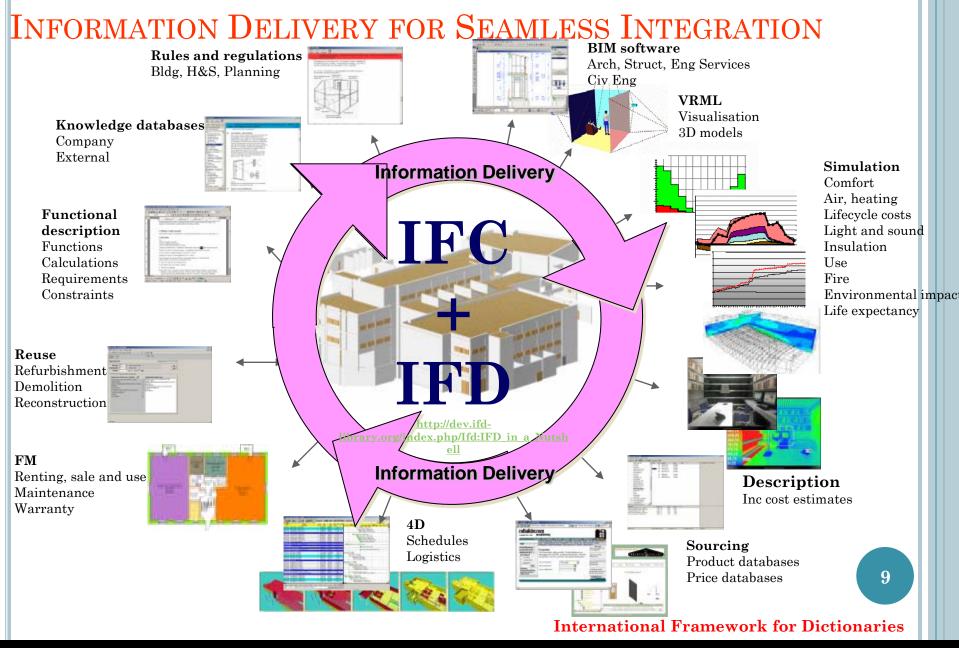
PM/Builder of Tomorrow: Are you e-ready?

- Revolution of Drawings
 - Manual
 - Computerized
 - 2D
 - 3D
 - 4D
 - o 5D
- do the e-ways using BIM
 - e-cost planning
 - e-cost control
 - e-taking off
 - > e-BQ
 - e-tendering
 - e-procurement
 - e-collaboration
 - e-facilities management

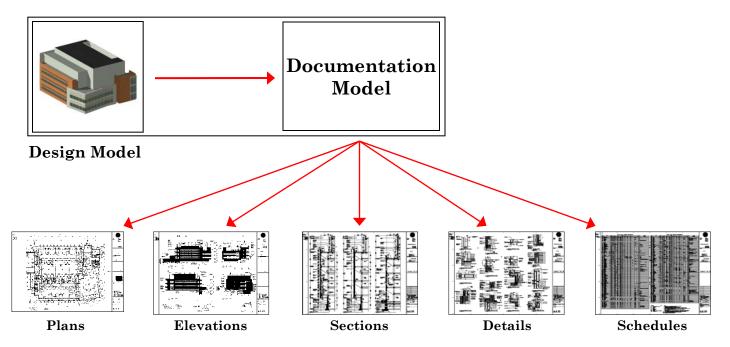
TRENDS This integrated database So at any time you can derive: - complete plans also means that if you modify or add data sections - elevations to the 3D model, - architectural and changes are construction details automatically reflected - bills of material in all documents. - window, door, and finish schedules - renderings and animations - and Virtual Reality scenes


WHY BIM? WHAT BIM CAN DO FOR DEVELOPERS' AGENTS?

• Using BIM


- Ensure resources are utilized to the best advantage
- Provide cost consultancy service to Client
- Describe work (BQ...)
- Predict, analyze, plan, value, manage & control cost
- Ascertain maintenance costs

• Impact of BIM


- Increase productivity
 - reduction in time
 - speed in execution of tasks
- Improvement in communications
- Enhancement of quality of service for customers/homeowners/etc

• Reduce Risk through Improved Coordination

Why BIM? Automating Documentation

- Dimensioning is both **automatic** and **associative**.
- Intelligent objects are scale-sensitive.
- Detailing is faster due to **intelligent objects** and **enhanced drafting** features.
- Zone tool will manage and track area calculations, room finishes or furniture schedules.
- Intelligent layouts **reduce errors and redlining** through linked drawing info such as linking of sheet/drawing numbers to section and detail symbols.

PART 2: WHAT?
TRANSFORMING PRACTICES IN THE
PROJECT MANAGEMENT OF
CONSTRUCTION PROJECTS

WHAT HAS BEEN DONE TO ENCOURAGE USE OF BIM?

• buildingSMART Singapore Chapter's effort

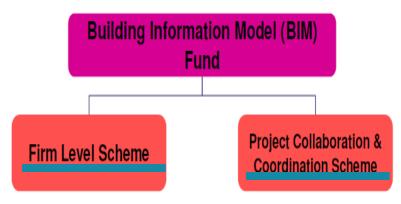
- NUS's effort
 - Introducing BIM in our curriculum
 - Encouraging students to participate in BIM competitions
 - R&D in BIM

What has been done to encourage use of BIM? R&D - Produce BQ directly from BIM

• e-Quick-BQ (EQBQ)

Figure 2: BIM QTO Process, producing Bills of Quantities directly from BIM

Produce BQ directly from BIM


What has been done to encourage use of BIM? R&D - using BIM based QTO: eQBQ to improve Productivity

- eQbq system can produce BQ accurately & automatically
- Re-measurement is **fast** as the **changes** are **done in BIM** & quantities of BQs will be automatically changed
- As eQbq system can be used for further processing throughout
 building life cycle by different stakeholders of construction industry
- eQbq system (BIM QTO Tool) has many features it can prepare
 - progress payments,
 - variation orders claims,
 - final accounts,
 - sub-contractors' claims;
 - used for tendering stage, construction stage, facilities management stage
- Elimination of manual taking-off of quantities thus
 - saving in manpower cost;
 - quantities are more accurate compared to manual taking-off since all quantities are directly extracted from BIM

PART 3: WHERE?
TRANSFORMING PRACTICES IN THE
PROJECT MANAGEMENT OF
CONSTRUCTION PROJECTS

WHERE? TECHNOLOGY ADOPTION: BUILDING INFORMATION MODEL (BIM) FUND

- Aims to help firms to adopt BIM technology
 - into their work processes
 - to improve theirs productivity
- Helps to defray part of the cost incurred in
 - training,
 - consultancy,
 - software or hardware

Help defray cost of software, hardware, training & consultancy (50% subsidy)

For more info – go to www.bca.gov.sg

16

Source: BCA

PART 4: SUCCESSFUL CASES TRANSFORMING PRACTICES IN THE PROJECT MANAGEMENT OF CONSTRUCTION PROJECTS

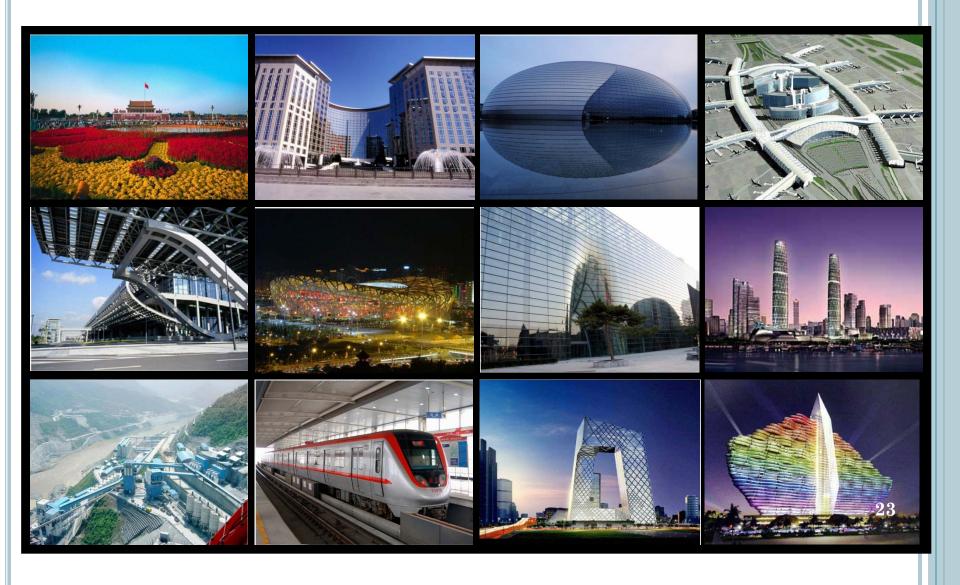
- ✓UC-win/Road
- **✓Architecture System**
- ✓M&E System

Creation of Pioneer Road in virtual reality using UC-win/Road

Rich graphics & realistic representation allow for better understanding of projects & an effective platform for discussion.

Creation of
Tuas West Drive
in virtual reality
using
UC-win/Road

Use of geographical coordinates ensures accuracy. True-to-life representation and real-time simulation.



Creation of Tuas
West Road
in virtual reality
using
UC-win/Road

Easy creation of roads in 3D virtual space. Rich texture libraries allow for quick data generation.

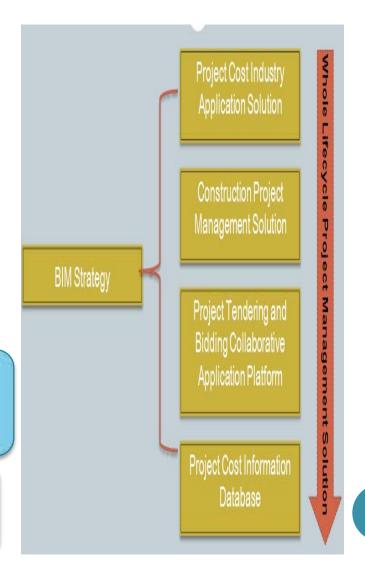
SUCCESSFUL CASE STUDIES USING BIM FOR ENHANCED EFFICIENCY TO MANAGE PROJECT

CHALLENGES & BIM TECHNOLOGY

Challenges

Labour cost increases and short duration given

Low Work Efficiency


Work fall below the expectations – as human cannot cope thus affecting accuracy and efficiency

Solution

Use BIM technology

Improve Quantity Surveyors efficiency up to 70% reduce QS workload and win more Tenders

Easy to Extract More Precise Quantities From 2D and 3D BIM Models

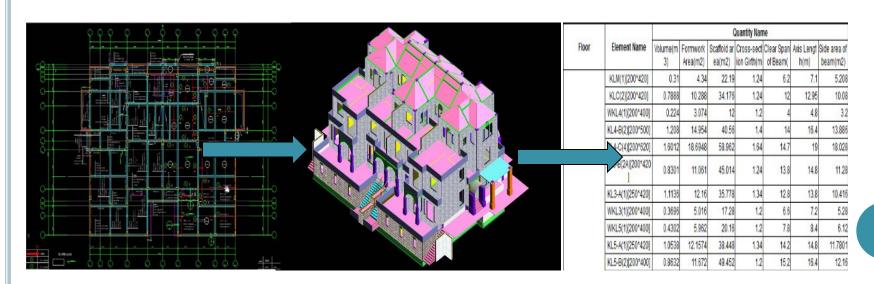
BIM TECHNOLOGY

BIM Strategy

Project Cost Industry Application Solution

Construction Project Management Solution

Project Tendering and Bidding Collaborative Application Platform


Project Cost Information
Database

Lifecycle **Project Management** Solution

QTO System: GAS2011

A **powerful** and **easy-to-use** QTO software (architecture). It enables you to quickly and accurately take off quantities from 2D drawings and generate automatic quantities from 3D BIM models using the most advanced on-screen electronic measurement system available. Prepare estimates, bills of quantities and tenders easily and all in a fraction of the time and cost!

System Architecture for Quantity Take Off

Core Business Values

POWERFUL

Powerful performance for lowering workload

- Support rich drawing format
- Built-in SMM2 and CP97 calculation rules
- 3D modeling more efficient and precise
- Support various reports input and output

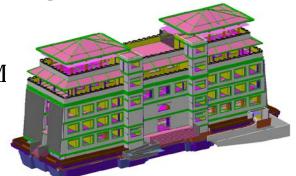
EASY-TO-USE

User-friendly software for processing architecture quantity take off

- Easy to get started and easy to master
- Fast quantity takeoff and centralized accuracy
- Import and export data of results easily

BEST VALUE

Best value for your technology investment

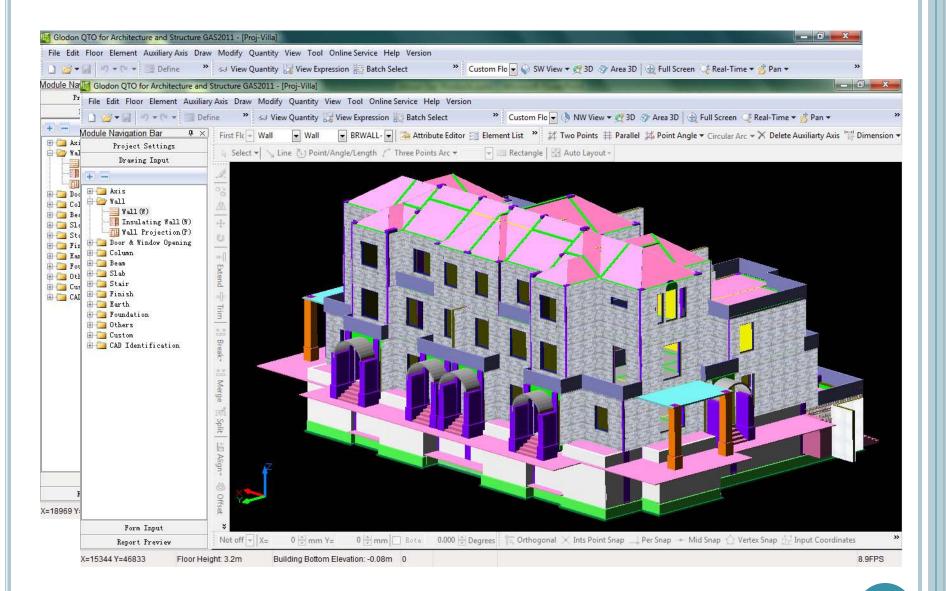

- Full-functionality & Comprehensive Solution
- Simplied pricing & maintenance
- Low demand for computer hardware
- Easy maintenance program

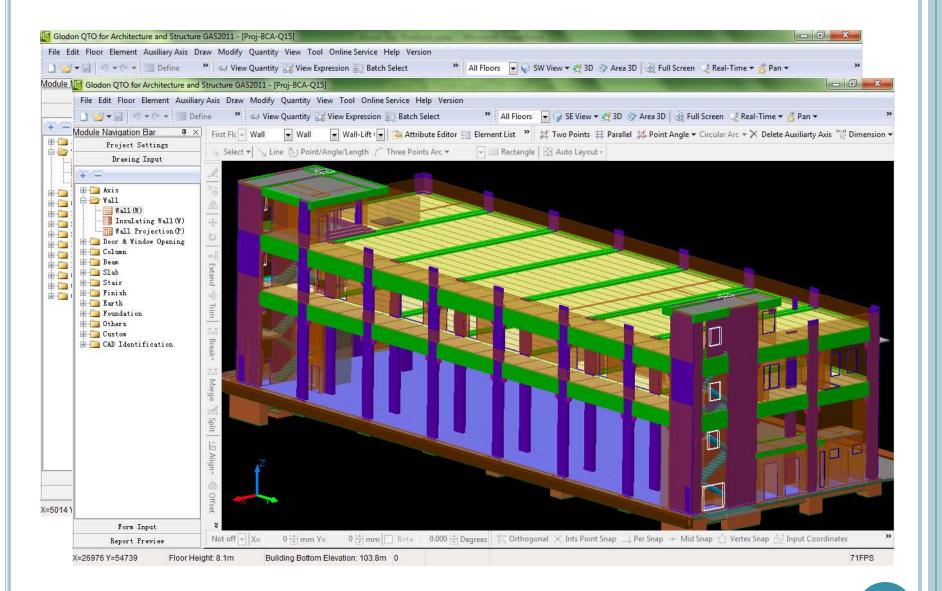
Powerful

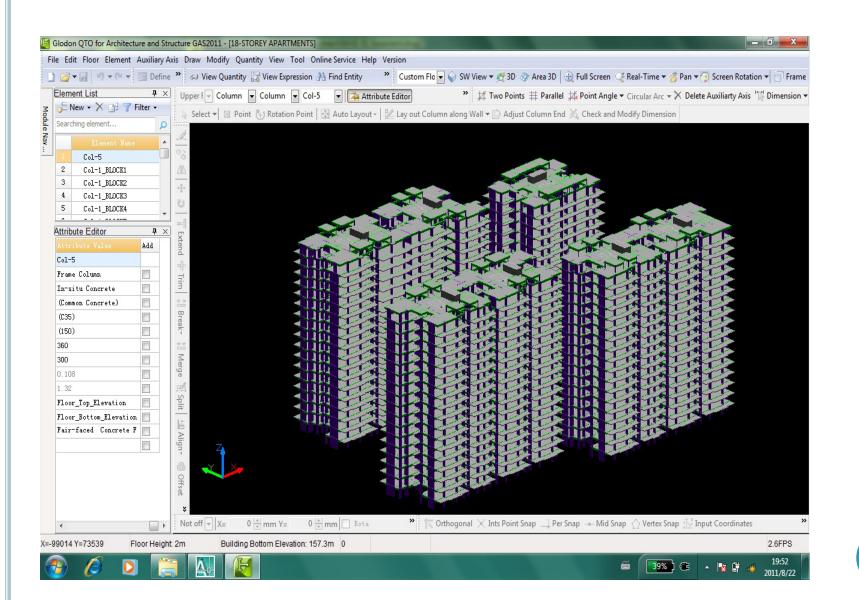
Powerful performance for lowering cost engineers workload

Support Rich Drawing Format

- Supports scanned, PDF, CAD drawings and BIM models all without need to buy CAD software.
- Supports BIM by using digital design data to accurately estimate quantities and costs.

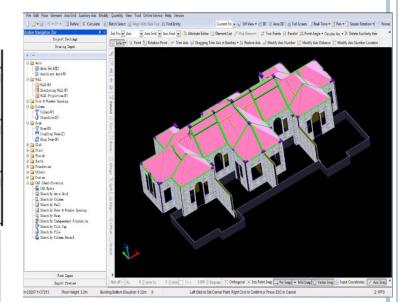

Built-in SMM2 and CP97 Calculation Rules


• Open rules, adjusting the special calculation rules according to the actual project.


3D Modeling More Available & Precision

- Only one click, VO change visible
- Modify element and entity flexible
- 3D calculation makes result more accurate

Powerful


DTQ-1

Powerful performance for lowering cost engineers workload

Support Various Reports Output

Formwork Area =	100.762m2					
<11,M><11,L>	Formwork Area = (1.4 <left length="" sideline="">+1.6<right length="" sideline="">)*3.87<wal height="" i="">-0.75<deduct raft="">-1.115<deduct beam="" fd="">-3.22<deduct column="">-0.22<deduct in-situ="" slab=""> = 6.305m2</deduct></deduct></deduct></deduct></wal></right></left>					
<7-49,N><5+50, N>	Formwork Area = (5.6 <left length="" sideline="">+5.2<right length="" sideline="">)*3.87<\ I height>-2.7<deduct raft="">-4.86<deduct beam="" fd="">-5.706<deduct column="">-0.9 Deduct in-situ slab> = 27.57m2</deduct></deduct></deduct></right></left>					
<8+50,P><9,P>	Formwork Area = (2.8 <left length="" sideline="">+3.2<right length="" sideline="">)*3.87<wal height="" i="">-1.5<deduct raft="">-2.13<deduct beam="" fd="">-2.586<deduct column="">-0.624</deduct></deduct></deduct></wal></right></left>					

Indicator Item	Floor	Quantity of Volumn(m3)	Rebar Weight (kg)	Average Rebar Content(kg/m3)
	Base Floor	45.1925	1355.7739	30
Concrete Wall	Sub-total	45.1925	1355.7739	30
	First Floor	0.2339	4.679	20.0043
Lintol	Sub-total	0.2339	4.679	20.0043
	-1st Floor	22.6511	3397.671	150.0003
Beam	First Floor	24.1392	3620.8793	150
	2nd Floor	20.4427	3066.406	150
	3rd Floor	11.4817	1722.2481	149.9994
	Sub-total	78.7147	11807.2044	150
	-1st Floor	59.3359	2966.7945	50
	First Floor	54.1679	2708.3935	50
In-situ Slab	2nd Floor	43.1838	2159.1878	49.9999
1100	3rd Floor	30.7669	1538.3456	50
	Sub-total	187.4545	9372.7214	50
	Base Floor	0.1555	23.3238	149.9923
	-1st Floor	23.1727	3475.905	150
	First Floor	35.1156	5267.34	150
Column	2nd Floor	17.952	2692.8	150
	3rd Floor	16.6081	2491.2158	150
	Sub-total	93.0039	13950.5846	150

		Quantity Name							
Floor	Element Name	Volume(m 3)	Formwork Area(m2)	Scaffold ar ea(m2)	Cross-section Girth(m	Clear Span of Beam(Axis Lengt h(m)	Side area of beam(m2)	
	KLM(1)[200*420]	0.31	4.34	22.19	1.24	6.2	7.1	5.208	
	KLC(2)[200*420]	0.7888	10.288	34.176	1.24	12	12.95	10.08	
	WKL4(1)[200*400]	0.224	3.074	12	1.2	4	4.8	3.2	
	KL4-B(2)[200*500]	1.208	14.954	40.56	1.4	14	16.4	13.886	
	KL4-C(4)[200*620]	1.6012	18.6948	58.962	1.64	14.7	19	18.028	
	KL3-B(2A)(200*420	0.8301	11.061	45.014	1.24	13.8	14.8	11.28	
	KL3-A(1)[250*420]	1.1136	12.16	35.778	1.34	12.8	13,8	10.416	
	WKL3(1)[200*400]	0.3696	5.016	17.28	1.2	6.6	7.2	5.28	
	WKL5(1)[200*400]	0.4302	5.962	20.16	1.2	7.8	8.4	6.12	
	KL5-A(1)[250*420]	1.0538	12.1574	38.448	1.34	14.2	14.8	11.7801	
	KL5-B(2)[200*400]	0.8632	11.672	49.452	1.2	15.2	16.4	12.16	

EASY-TO-USE

Fast start with software for processing architecture quantity takeoff

Easy to Get Started and Learned

- Simple and clear software operating interfaces
- Simple and few operation steps
- No need for Professional CAD knowledge

Fast take-off quantity and centralized accuracy

• 3D quantity takeoff platform with accuracy calculation rule, make the quantity more accurate

Easily and accurately export BQ

• Embedded rich BQ format, it allows users to choose according to practical needs.

33

BEST VALUE

The best value for your technology investment

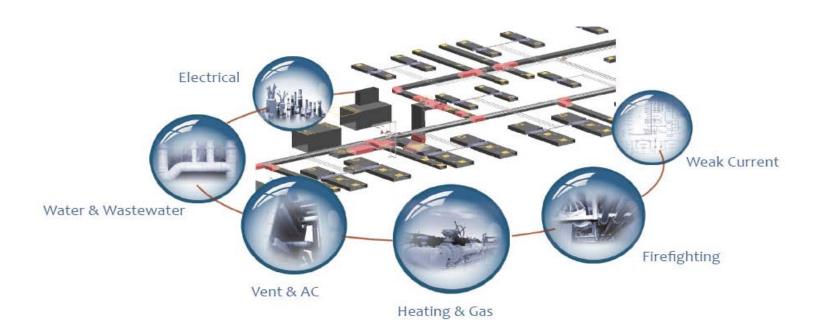
Full-functionality & Comprehensive Solution

- All-In-One: Earth, Concrete, Template, Finishing, Rebar quantity
- Advanced reports, rich content

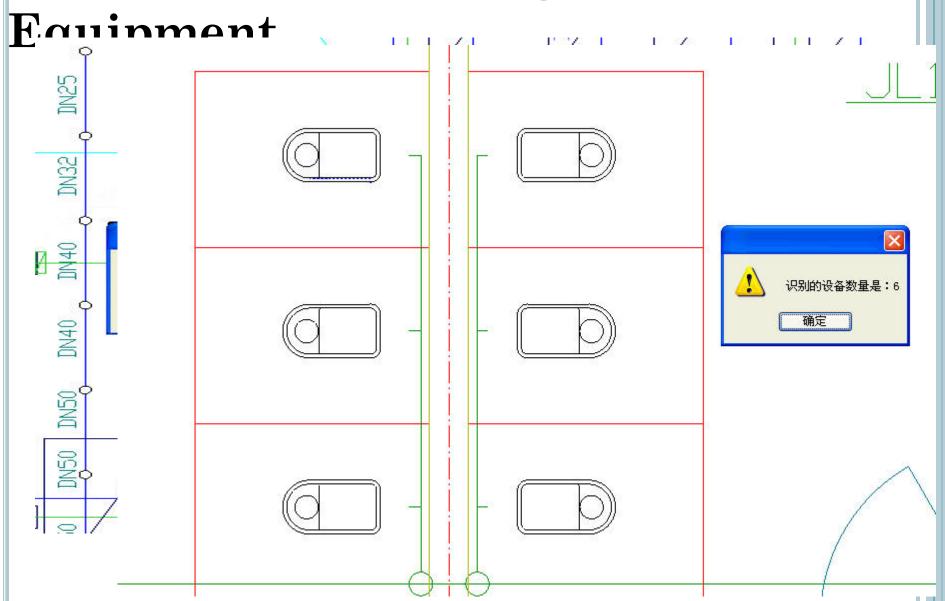
Simplied Pricing and Maintenance

- One edition, one price
- All the functionality you need for less than 6K
- No need for additional CAD software

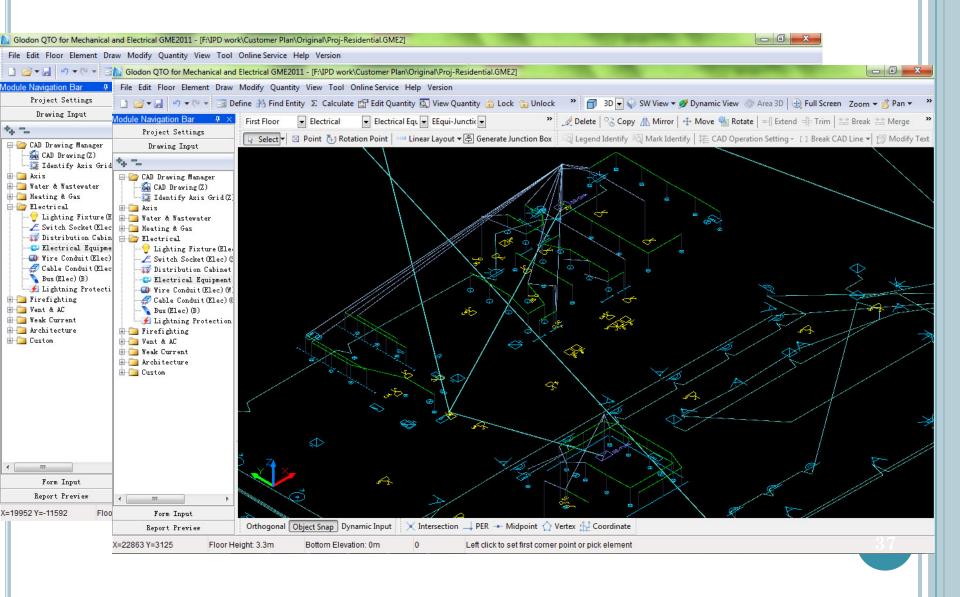
Low Demanding for Computer Hardware

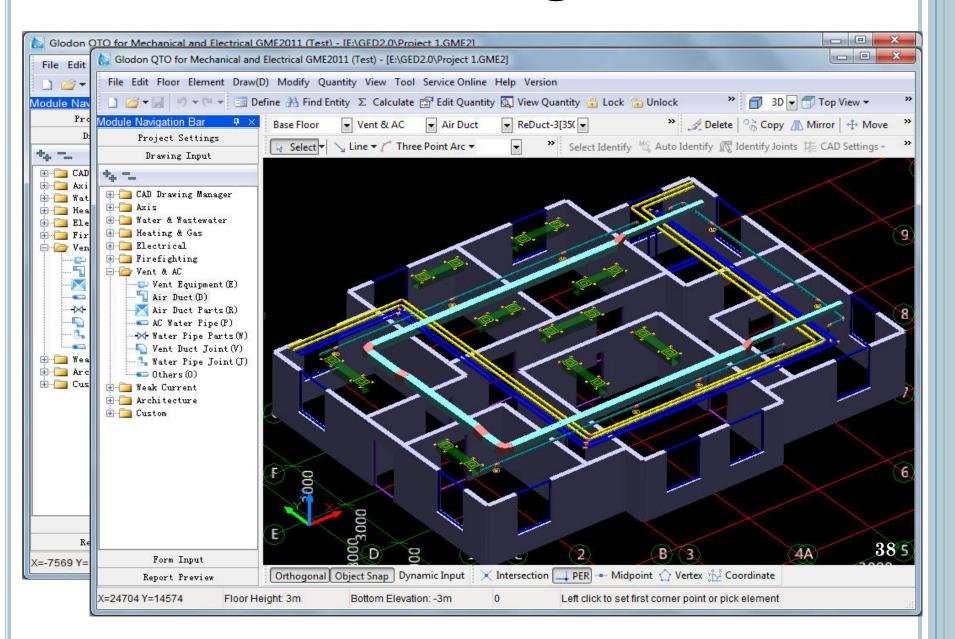

• Intel® Pentium® 4 processor 2.0 GHz or higher, 1GB RAM, 2GB free disk space.

Easy maintenance program to keep your investment up-to-date


M&E System: GME2011 Overview

GME2011 for mechanical and electrical is a BIM based quantity take-off software. It can help to efficiently generate a 3D cost information modeling.


6 PROFESSIONALS IN GME2011


GME2011 for Counting

GME 2011 FOR ELECTRICAL

GME2011 for Plumbing

GME2011 Report

System E		System	Element Name	Qty Name	Character	Unit	Project Qty	Remarks
Pipe (Water)	1	 Vent Pipe (Ventila 	tion)					
			ReDuct-1[200*200]	Length	Sheet Steel Vent-Pipe Width: 200 Height: 200 Insulation Thickness: 0 Glass Wool Plate Ventilation Thickness: 0 .75 straight	III:	15.38	
v	v			Expanded are a	Sheet Steel Vent-Pipe Width: 200 Height: 200 Insulation Thickness: 0 Glass Wool Plate Ventilation Thickness: 0 .75 straight	0.000	12.30	
Water Supply S ystem				CoverArea	Sheet Steel Vent-Pipe Width: 200 Height: 200 Insulation Thickness: 0 Glass Wool Plate Ventilation Thickness: 0 .75 straight	mz	12.30	
	em		15/1 ()	Length	Sheet Steel Vent-Pipe Width: 300 Height: 300 Insulation Thickness: 0 Glass Wool Plate Ventilation Thickness: 0 .75 straight		58.87	

GME2011 for Variation Orders

	RecordType	Item	Description	Drwgs No.	Location	Unit	Baseline Qty		Changed Qty	Belong To Elemen
1	Item	BQ11					0.00000	0.00000	0.00000	
2	Item	BQ11001	Waste water system - water pipe length DN100			m	316. 77058	400, 00000	83, 22942	Sanitary Ware (Wate
3	Item	BQ11003	Fire fighting system - water pipe length DN100			m	85. 16614	85. 16614	0.00000	Pipe (Fire)
4	Item	BQ11004	Fire fighting system - water pipe length DN100			m;	0.00000	0.00000	0.00000	Pipe (Fire)
5	Item	BQ11005	Fire fighting system - water pipe length DN25			m	6.00000	6.00000	0.00000	Pipe (Fire)
6	Item	BQ11006	Vent system - vent pipe length 200*200			m	15.37566	47.89688	32, 52122	Air Duct (Vent)
7	Item	BQ11007	Vent system - vent pipe length 300*300			m	58.87482	58.87482	0.00000	Air Duct(Vent)
8	Item	BQ11008	Vent system - vent pipe length 350*350			m;	37. 34938	37. 34938	0.00000	Air Duct(Vent)
9	- Item	BQ13					0.00000	0.00000	0.00000	
10	Item	BQ13006	Vent system - vent pipe area 200*200			m2	12.86760	38, 88458	26,01698	Air Duct(Vent)
	Item	BQ13003	Waste water system - water pipe insulating volumn DN100			m3	0.00000	0, 38000	0.38000	Pipe (Water)
2	Item	BQ13004	Fire fighting system - water pipe insulating v olumn DN100			m3	0.17183	0. 17183	0.00000	Pipe (Fire)
13	Item	BQ13005	Fire fighting system - water pipe insulating v olumn DN25			m3	0.00430	0.00430	0.00000	Air Duct(Vent)
4	Item	BQ13007	Vent system - vent pipe area 300*300			m2	70.64976	70.64976	0.00000	Air Duct (Vent)
5	Item	BQ13008	Vent system - vent pipe area 350*350			m2	52.28916	52. 28916	0.00000	Air Duct (Vent)
6	<u>Item</u>	BQ15					<u>0.00000</u>	0.00000	0.00000	
7	Item	BQ15001	Fire fighting system - sprinkler No.			piece	8.00000	8.00000	0.00000	Sprinkler(Fire)
8	Item	BQ23					<u>0.00000</u>	0.00000	0.00000	
9	Item	BQ23001					0.00000	0.00000	0.00000	
20	Item	BQ23002	Water system - joint No.			piece	36.00000	45, 00000	9,00000	Pipe Joint (Water)

SUCCESS CASES FROM US

- BIM not only enhances efficiency but also <u>saves</u> <u>costs</u> (LeFevre, 2011) for the following stakeholders:
 - Owner
 - Architect/ Engineer
 - Construction Manager
 - Contractor
 - Manufacturer
 - Users

CONCLUSION

• Goethe - "until one is committed, there is hesitancy, the chance to draw back ... whatever you can do, or dream you can do, begin it. Boldness has genius, power and magic in it. Begin it now."

BIM in 48 hours

Q & A

Thank You!

Associate Professor Evelyn TEO Ai Lin (Dr)

National University of Singapore
Department of Building
Email: bdgteoal@nus.edu.sg